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Abstract— The Blackford North Bridge design team was the 
first chipset project in Intel’s Advanced Components Division 
to seriously utilize Formal Property Verification (FPV).  Over 
the course of the project we learned a lot about the challenges 
of deploying FPV to an ASIC team.  Overall our use of FPV in 
Blackford was very successful, having helped us find 
approximately 24 logic bugs, and significantly increased 
confidence in our design.  We have a number of methodology 
recommendations for future ASIC projects, including early 
introduction of FPV; the assigning of central FPV owners; 
FPV-friendly RTL standards; leaving ownership primarily 
with each DE; and the encouragement of assertion 
development through density checks.  We think that by 
learning from our experiences and following our 
recommendations, other ASIC teams will be able to expand 
their use of FPV as well, for a significant increase in design 
confidence. 

I. INTRODUCTION 

Formal Property Verification, or FPV, is a powerful 
technique in which properties of a VLSI design are proven 
mathematically.  This contrasts with traditional simulation-
based validation, which only applies specific test vectors—
FPV proofs are valid for all possible test vectors, 
theoretically providing 100% coverage for the properties 
verified.  Many design teams have reported finding 
important bugs using FPV techniques.([1],[2],[5])  We began 
using FPV on our chipset team for our recent Blackford 
North Bridge (BNB) chipset design, and based on our 
experiences, believe that it should become an accepted part 
of ASIC design methodology. 

As one would expect, there are significant challenges in 
using formal property verification; there has been a lot of 
debate over whether FPV offers sufficient ROI for most real-
life design problems.([3],[4])   Specifying the properties to 
be proven may require the designer to learn a new 
specialized language.  The tools themselves have been 
difficult to use, requiring specialized choice of  proof engine 
parameters and involved property decomposition techniques 

by the users in order to obtain useful results [4].   And once 
the tool reports that it has disproved a property, it takes 
detailed analysis by the user to determine if this is a real 
design bug.   

However, recently the EDA industry has moved towards 
simplifying the FPV process, allowing “push-button” runs to 
prove embedded assertions in RTL designs.  The Foresight 
tool from Intel’s Design Technology team is an example of 
these trends; in fact, we believe that the current generation of 
FPV tools are indeed feasible for use by an ASIC group like 
ACD.  It allows the user to supply an RTL model with a set 
of properties as an input, and uses heuristics to make good 
choices of proof engine parameters that can handle a wide 
variety of designs.  The Blackford North Bridge chipset 
design is the first design project in Intel’s Advanced 
Components Division (ACD) to make a serious attempt at 
using FPV.  

We chose to concentrate on proving embedded assertions 
in the RTL, which has been an increasing emphasis on 
processor design teams, and enables our engineers to easily 
add properties applicable to both simulation and FPV as part 
of the design process.   Since our design language was 
Verilog, our assertions were specified using the Accelera 
OVL library ([8],[9]), which has recently become a standard 
in this area.   We worked with the Foresight owners to add 
full OVL support to the tool. 

Initially, our design team was provided training on the 
Foresight tool, and then left free to use FPV as much as 
desired during the design process.  We soon found that a 
dedicated minority of design engineers went on to use FPV 
very effectively, but many others still found the tool 
difficulties too daunting and barely used the tool at all.   This 
revealed a major issue that had not been previously 
discussed:  what is a good team-wide methodology for using 
FPV?   In the area of simulation, nobody would think of just 
releasing a simulator to the team and then saying “go ahead 
and validate”—there are coverage metrics, test plans, 
regressions and similar methodological rigor.  Yet in FPV, 
we had not considered these issues. 



At this point, we added a central owner to drive and 
evaluate FPV, and made several improvements in our 
methodology.  We developed a wrapper script to simplify 
some of the aspects of tool usage that were challenging for 
the team.   A regression run was added, so we would have a 
clear idea which blocks had many failing assertions, which 
had no assertions at all, and which were crashing the tools.  
We also initiated a “property push” on the most at-risk block, 
our memory controller, in order to increase our confidence in 
the design. 

Overall we consider our use of FPV in Blackford a 
success, having used the tool to find approximately 24 logic 
bugs, and significantly increased confidence in our design.  
We have a number of methodology recommendations for 
future ASIC projects, including early introduction of FPV; 
the assigning of central FPV owners; FPV-friendly RTL 
standards; leaving ownership primarily with each DE; and 
the encouragement of assertion development through density 
checks. 

We think that by learning from our experiences and 
following our recommendations, other ASIC teams will be 
able to expand their use of FPV as well, for increased design 
confidence. 

II. RUNNING FPV 

Before we start discussing the details of what we did on 
our project, we should give a basic introduction to how 
formal property verification is run on an ASIC design, and 
the basic debug process.  In terms of the methodology for 
running the tools and debugging issues, FPV is different 
from some other design flows, and this is a major cause of 
the usage challenges.  Note that we are concentrating here on 
the type of simplified flow that was used for our designs; 
microprocessor teams use more elaborate techniques like 
proof guidance and property decomposition [2] as well. 

The major input to FPV is a design description with a set 
of properties, in our case Verilog RTL models with 
embedded OVL properties.  (It is also possible to run FPV 
on more abstract models or with externally specified 
properties, but we did not do that in Blackford.)    Some of 
the properties must be designated by the user as assertions, 
targets that need to be proven.  The rest will be assumptions, 
or constraints, properties that the tool should take as a given.  
Usually the assumptions are properties on inputs, or 
properties whose proof would depend on logic external to the 
model. 

The level of hierarchy where FPV is run has to be chosen 
carefully:  the tools can quickly run out of memory on 
complex models, and we had to run numerous designs at unit 
level instead of cluster level.  Often it will take a few 
attempts (in which the tool crashes due to excessive memory 
consumption) in order to identify a reasonable level to run. 

Once the proper hierarchy is selected, the user can 
effectively run the FPV tool and analyze the results.  The 

output of the tool will be a file classifying the assertions into 
four basic categories: 

• Proven.  This means that the tool has proven the 
property for all possible cases, under the current set 
of assumptions.  This is the ideal result. 

• Bounded Proof for <n> cycles.   For complex 
properties, FPV will often prove them only for a 
certain number of cycles after reset.  While this is 
not quite as good as a full proof, it is still a very 
useful result, showing that there are no possible 
violations for the given number of cycles after reset.  
In designs with complex state machines or deep 
pipelines, there may still be an error lurking beyond 
the given number of cycles; if a user knows this to 
be the case for their design, they may want to rerun 
with higher memory or timeouts, or at a lower 
design hierarchy. 

• Disproved.  For properties that it determines to be 
false, an FPV tool will generate a counterexample 
“simulation trace” showing how they are violated.  
The user must then analyze the trace, to determine if 
it is a real design bug or the result of a missing 
assumption that needs to be added.  Typically, the 
majority of these cases turn out to be missing 
assumptions, which is a major challenge to users:  
only a small number of the disproved properties 
from FPV turn out to reveal useful design bugs. 

• Unknown.  These are cases where FPV was possible 
on some subset of the model, but not the full model, 
due to the complexity of the assertion's input cone.  
These cases should usually be rerun on a simplified 
model or at a lower design hierarchy to get usable 
results. 

After all the counterexamples are understood, the user 
must add the appropriate assumptions to the model, and run 
again.  It is also important to follow through by verifying the 
newly added assumptions:  either add them as assertions to 
check using FPV on the driving block, or run the project’s 
validation (simulation) test suite as a sanity check.  A 
common pitfall is the addition of assumptions that are too 
restrictive, or overconstraining:  they enable the proof of the 
assertions, but rule out valid counterexamples.  Thus 
simulation must still be run as a complement to FPV, to help 
detect cases where FPV owners generated too-broad input 
assumptions and possibly invalid proofs. 

Overall, FPV is an iterative process:  after each FPV run, 
counterexamples are analyzed and assumptions are added.  
Unlike the generation of simulation tests, where the 
designers usually write code to explicitly generate valid test 
vectors, FPV assumption generation requires that the user 
think about all possible test vectors, and write constraints 
that will exclude invalid ones.   While this can be a lot more 
work for the design engineer, it has the significant advantage 
that coverage is achieved for all possible test cases, instead 
of the small set of explicit ones used in simulation.   



III. INTROUDUCING FPV IN BLACKFORD 

Intel’s Advanced Components Division began 
developing methodologies for Blackford Server Chipset 
design in June 2002.   It was already decided that we would 
be using assertions extensively.  The benefits of assertions 
are well documented [7] and had already been successfully 
used in the TwinCastle Server Chipset. 

With assertion checks already available in the design, 
using them for Formal Property Verification seemed to be a 
logical next step.  The benefits of using Formal Verification 
on existing assertions are manifold. 

• FPV does not require any simulation support or test 
benches to be written, thus helping in producing 
good quality RTL early.  

• The FPV process would help in correcting 
assertions.  A common problem with assertions is 
that initial assertions are often wrong.  Either the 
properties are not well thought or they are captured 
wrongly.  FPV would help clean them up, for correct 
execution during simulation.   

• The FPV process would lead to more assertions. 
Another issue with assertions is that we can think of 
only a few.  While running FPV, counterexamples 
provide us more properties that can be captured as 
assertions or assumptions. 

• Examining counterexamples and identifying new 
properties leads to the designer having a better 
understanding of the design. 

• Some simple logic, like large counters and one shot 
triggers, can be very hard to test with simulation, 
especially if the logic needs to be exercised by a very 
high level validation environment.  An alternative is 
to emphasize low-level validation or use FPV on 
properties written to capture the design intent. 

• A formally proved list of properties serves as a 
valuable safeguard against introducing bugs at a later 
stage in the design 

The process of running FPV on embedded assertions in 
Verilog RTL code was not fully supported by our installed 
tools during the early stages of Blackford, though 
commercial tools such as Blacktie from Verplex (now part of 
Cadence) were available.   Until then Formal Verification 
within Intel primarily took place on the CPU development 
teams.  A separate Formal Verification Team would write 
the specifications in a formal language (like PSL or ForSpec) 
and apply them to the design.  They would use many 
specialized and time-consuming techniques (like pruning, 
ordering) to exhaustively prove the design properties.  Our 
approach differed significantly from them in three ways.  

• We did not have the resources to follow this 
approach, especially with regard to learning the 
specialized formal verification techniques.  The 

people who ran FPV were Design Engineers and 
they would rather concentrate on design. 

• Our primary benefit from the process was the 
counterexamples from which we derived more 
properties, fixed bugs, corrected existing properties 
or clarified the design better.  Rigorousness in proofs 
was preferable but not necessary.  

• We needed a really easy-to-use interface to the FPV 
tools and methodology.  Otherwise designers and 
their managers would simply ignore them. 

Debug Counter Example 
with Debussy
(nWave –ssf property.fsdb)

Initialization file specifying 
Reset Pattern (BSStack.init)

Setup Environment 
(source fpv.setup)

Run FPV 
(fst BSStack –ovl –clock bclkmain=1)

Modify RTL, Add 
Assumption, or Modify 
Assertion / Assumption

RTL File with OVL 
Assertions (BSStack.v)

Proved or Not Violated

Counter Example ?
(property.fsdb)

STOP

Yes

No

 

Given the above constraints, we worked with the Intel’s 
Design Technology team to guide the development of a new 
formal verification tool, Foresight.  This involved changes to 
the older, complex flows:  directly parsing embedded OVL 
assertions; providing a straightforward command-line 
interface; adding simple clock/reset parameters; 
automatically providing good engine defaults; and 
generating counterexamples in Debussy waveform format. 

The initial flow for running FPV is shown in Figure 1.  
The notable characteristic is the simplicity of the flow.   

The FPV tools were presented to the Design Team in a 
half-day workshop.  The workshop included an introduction 
to formal verification,  a presentation on the FPV flow and a 
lab session giving the designers hands-on experience.    

Figure 1:  Basic Foresight FPV Flow 



The next two subsections describe some of the specific 
successes we had in using this flow for design verification. 

 

IV. FPV CASE STUDY #1:  ADDRESS DECODE UNIT 

The assertion-based FPV flow was initially tested on the 
address decode unit (BCDcd_Addr) to iron out kinks in the 
flow.  BCDcd_Addr handles processor and PCI Express 
address decode based on the system address map and routes 
transactions appropriately.  The possible targets are memory 
(MemCyc), configuration (CfgCyc), PCI Express (PexCyc) 
and other FSB (IntCyc); it could also be internally aborted.  
The system address map is based on numerous configuration 
registers which have yet to be fully randomized in the 
simulation environment even today.  These configuration 
values are decoded by the targeted logic blocks in parallel, 
but it is important that only one of the blocks is activated at 
any given time.   For these reasons the decode unit was a 
good candidate for FPV. 

FPV was used as the first form of unit level validation on 
the block and it was followed by simulation.  The original 
property that was proved was that the cycles (MemCyc, 
CfgCyc, PexCyc and IntCyc) were mutually exclusive and at 
least one was asserted for every transaction.  More properties 
were added and proven after simulation found problem areas.   

FPV found three initial problems and two subsequent 
ones.  For example, one issue was related to an address 
decode boundary condition where a ‘>’ was used instead of 
the intended ‘>=’: 

assign MEM[5] = ((AddressA >= 
`AddrWi'h 00_0010_0000) && (...)) ? 1'b1 
:  1'b0; 

Another was related to request encoding where there was 
overlap in the decode of transaction types, causing false 
request types to be output.  The encoding was done in 
parallel and FPV was used to guarantee that each decode was 
adequately qualified.  This would have taken much longer to 
find using simulation. 

All the bugs that were found by FPV could have been 
uncovered by simulation, but the property that was proven 
gives higher confidence in the unit, since the simulation 
environment lacks randomized configurations.  The bugs 
were found without requiring a complex environment to be 
written; the complexity was in coming up with the correct 
assumptions. 

FPV provided a good understanding of the corner cases 
in the decode logic, including illegal conditions.  We added 8 
basic input assumptions and 85 configuration register related 
assumptions in the process of proving the above mentioned 
property.  One of these assumptions turned out to be 
overconstraining and was hiding a bug that was uncovered 
by simulation, where memory region that was made visible 
by moving an adjustable region caused assertion of PexCyc 
instead of MemCyc.  This assumption had to be relaxed and 
property reproved.  The configuration assumptions were very 

useful in bringing up the initial simulation configurations and 
verifying later configuration changes. 

Some tips and tricks based on this experience include: 

• Be careful not to use a simple ‘mutex’ property 
when something more complex is meant.   This can 
be an issue for naive assertion authors. 

• Run at a higher-level module to incorporate more 
logic, reducing the need for assumptions.  A couple 
of properties in the inbound address decode 
(BCDcd_InbAddr) required FPV to be run on the 
parent module (SBDcd) so that additional 
assumptions can be avoided due to the dependency 
on the sibling unit BCDcd_Addr.   

• Be careful about cases where a sudden reset 
reassertion can invalidate a property.  Reset had to 
be pulled low (inactive) when proving a property 
that required decode outputs to be held stable for 2 
clock cycles. 

• Keep track of previous FPV results for sanity-
checking.  A global summary file proved useful in 
keeping track of when a property was last proven 
and what assumptions were made. 

V. FPV CASE STUDY #2:  MEMORY CONTROLLER 
FPV was used successfully in several of the Memory 

Cluster (MC) units, including the Memory Arbiter (MRA), 
and the Memory Protocol Engine (MPE). There are two 
branches in the MC, and each branch has its own MRA and 
MPE units. The MRA arbitrates between reads coming from 
4 different queues and writes coming from 2 other queues, 
and the MPE stacks and sends the commands issued by 
MRA and sends them in the appropriate FBD (Fully 
Buffered DIMMs) format. Additionally, the MPE applies 
various back-pressuring signals on MRA to make sure that 
different commands do not conflict with each other and that 
various DIMM restrictions are accounted for.  

There is a very tight handshake between MRA and MPE 
on each branch, but the two branches are independent of 
each other in normal running conditions. There is a 
configuration, however, “mirror mode”, where the two 
branches become intertwined.  In this mode, write 
commands (and associated data) that are issued on one 
branch need to be sent to the other branch at the same time. 
This creates a rather complicated handshake and requires 
special handling.  

Verifying assertions on one branch proved to be 
relatively straightforward. However, proving the same 
assertions in mirror mode where both branches come into the 
picture proved to be a demanding job. The ideal way of 
verifying those assertions would have been running FPV on 
the whole MC cluster and letting the tool test all the MRA 
and MPE logic as well as other interfacing units to ensure 
that the assertions are not violated. The size and complexity 
of the MC cluster made this option impossible: FPV kept 



crashing during the runs. The second best option was to try 
to combine the logic of both branches into one wrapper and 
use FPV to try to prove the assertions at that level. Because 
of the interdependency between MPE/MRA and the two 
branches, we decided to create two levels of wrappers:  one 
around MRA and MPE, and another around the two 
branches.  

Furthermore, a global assumption file was added to the 
top wrapper with 25 assumptions on interfacing units. After 
adding the wrappers, we verified a total of 82 MPE/MRA 
assertions, none of which were violated. When running 
simulation regressions on a new model late in the project, the 
added assumptions caught 3 potential problems in other 
interfacing units (where FPV had not been fully debugged). 
No real problems were found in MPE/MRA itself, but two 
minor modifications were made just in case other interfacing 
units were not covering special corner cases. 

A. MPE  Electrical Throttling Example  
In this example, the specifications require that DIMM 

activations be limited to a programmed value on each rank 
on a branch. The programmed value is essentially the width 
of a sliding window, and the specifications require that each 
rank should not receive more that 4 activations at any time 
within that sliding window. Once the threshold of 4 
activations is reached, the MRA starts electrical throttling on 
the rank in question by asserting ElecBlockRank,  which 
blocks further activations until the window slides further in 
time and the very first activation steps outside the window. 
Assertions similar to the one below were written for all 8 
ranks: 

assert_never EThrotViolation0 
(bclkmain, resetnn, (ElecBlockRank[0] & 
ActDone & (ActRank==3'd0))); 

The ActDone & ActRank above could originate from 
Branch[0] but are sent to both Branch[0] & Branch[1] in 
mirror mode. This extra complexity made these assertions 
very difficult to prove on a single MRA. However, once the 
wrappers described above were added, FPV was able to use 
the logic of both branches and managed to prove the above 
property. 

B. MPE Configuration Command Example 
The MPE schedules configurations reads and writes to be 

sent on the FBD. It receives a request (IssueCfgTxn) from 
the Memory Address Decode unit (MAD). Along with the 
request, the details of the configuration command 
(CfgDecAddress) are supposed to stay stable until and 
acknowledgement is sent back by the MPE (MpeCfgSent). 

In initial FPV runs, many invalid counterexamples were 
generated, where the CfgDecAddress input was illegally 
changing in the middle of a command, before the MPE 
acknowledgement.  We realized that an explicit assumption 
was needed in order to specify that this address had to 
remain stable.  The OVL expression below captures this 
handshake: 

assert_win_unchange #(1,1) 
ASSUME_TxnUnchange0 (bclkmain, resetnn, 
IssueCfgTxn, CfgDecAddress, MpeCfgSent); 

This was needed to prove other assertions in MPE and 
was coded as an assumption since it applies to an interfacing 
unit (MAD), and cannot be proven based on the MRA/MPE 
logic only. Therefore, it was added at the top-level wrapper 
and was applied to both branches.  Once this was added, 
many previously failing assertions were proven in FPV. 

This assumption later fired in simulation, though, when 
running the model release regressions after a new RTL 
release.  It was found the MAD samples the buffer ID from 
the Data Management (DM) cluster  one cycle late, and that 
ID can change before the MPE asserts the MpeCfgSent.   

Note the symbiotic relationship between simulation and 
FPV in this case:  while simulation ultimately detected the 
error, the assumption that was violated in simulation was 
generated as part of the FPV debug process.  This illustrates 
the advantage of using a general assertion library like OVL, 
which applies to both the simulation and FPV environments. 

VI. DRIVING FPV CENTRALLY 

About three quarters before tapeout, we realized that only 
a minority of design engineers were actively using Foresight 
to check their designs.  Part of the problem was that FPV had 
no real owner for our project:  once the tool was available, it 
did not appear in any official design completion checklists, 
so there was little management  support for its use.  To 
address these issues, a formal verification owner was 
assigned for BNB, to analyze and improve our usage of FPV 
throughout the project.  

This owner’s first task was to analyze our Foresight runs 
for common project-level issues, and implement central 
solutions to make it easier for individual engineers to run the 
tool.  He identified a number of common issues that resulted 
in invalid counterexamples or failed tool runs, and pursued 
several solutions:   a wrapper script to hide tool details, 
central assumption templates to quickly enable workarounds 
for common problems, and working with the tool authors to 
improve compatibility with BNB designs.  Among the issues 
simplified by the wrapper script were: 

• Tool invocation details.  Even simplified FPV tools 
like Foresight offer a bewildering set of options for a 
novice user, and it is often unclear which ones need 
to be set explicitly and which have reasonable 
defaults.   

• RTL Issues and Compiler Limitations.  Numerous 
parts of Blackford initially could not be consumed 
by the FPV compiler (Esperanto), due to slight 
deviations from the IEEE Verilog standard that 
broke the FPV compiler but were tolerated by 
simulation. 

• Mid-test reset assertion.  Often a counterexample 
would be seen to be reasserting reset in the middle of 



some complex protocol.  While this is technically 
possible, it is not interesting from a debug point of 
view.  An example of this is discussed in Case Study 
#1 above.  We wanted to rule out all such cases in 
FPV runs by default. 

• Configuration registers.  Many designs have a set 
of config registers, which are set once and never 
change values without another reset.  Like a mid-test 
reset assertion, a mid-test config change is 
technically possible but not interesting from a debug 
point of view in most cases.  

• Stability assumptions.  Most BNB inter-unit signals 
are synchronized to rising clock edges, but by 
default Foresight generates counterexamples with 
signals changing in both clock phases.     

The next task was to implement a project-level FPV 
regression.  Once this was implemented, we began regular 
runs on our full design, so we could assess which clusters 
were making effective use of FPV, and begin deciding where 
to concentrate more detailed efforts.   We found that initially 
about 70% of our assertions were proven in the regressions, 
and also identified several clusters with almost no assertions.  
Running the regressions regularly enabled us to identify 
cases where previously passing assertions began to fail, so 
we could analyze them for further debug.  

Along these lines, we also began running improved 
assertion density checks.  Previously, assertion density had 
been measured using the traditional metric of assertions per 
line of code.   We added a new method provided by the 0in 
Check tool from Mentor Graphics:  functional coverage of 
flops by assertions.  This check measured how far each flop 
is from the nearest assertion, enabling us to find cases where 
seemingly assertion-dense units (measured by assertions per 
line) actually had large areas of logic that were uncovered.  

We then identified the cluster considered the most at-risk 
due to logic complexity, our memory controller (MC), and 
began a Property Push, where the FPV owner and other 
experts worked with individual design engineers.  In cases 
where units were poorly covered by assertions or most 
assertions were not yet proven, the experts helped the DEs 
write new assertions, run FPV, and debug the results.  
Initially we were hoping that the central experts could take 
over most of the FPV work for these blocks, but it quickly 
became apparent that very detailed design expertise is 
needed to create the correct assumptions—the assumptions 
created by non-authors of a design almost always missed 
some subtle issue and were violated in simulation.  Thus we 
decided to revert to a more DE-driven method, with the 
central owners encouraging FPV use and helping designers 
with tool usage and debug issues.  In the end, we considered 
the Property Push a success; it found five interesting logic 
bugs that had been missed in simulation, using about 10 
engineer-weeks of effort. 

Finally, we began some experiments with a vendor FPV 
tool, Mentor’s 0in Search, that takes an interesting 

alternative approach.  This tool combines simulation with 
FPV in the same run:  it analyzes simulation traces to find 
interesting states, then runs FPV from that point.  Thus it has 
the potential of finding errors many cycles after reset 
(beyond the proof radius of tools like Foresight) using real-
life test cases as a guide.  While some companies have 
reported good results with this and similar tools ([1],[6]) we 
were disappointed.  There were too many tool bugs and 
minor issues to get it working on more than one cluster by 
tapeout, and in the end 0in Search found us no additional 
bugs.  Later we also tried the similar Magellan tool from 
Synopsys, but were not able to find any new bugs using that 
technology either.  

VII. RESULTS 

There are three types of results to report from using our 
FPV methodology.  First, there is the usefulness of the DE-
driven FPV run on local models.  Second, there is the 
common metric of the number of bugs found.  Finally, there 
are the overall benefits to the project tapeout confidence as a 
whole. 

Qualitatively, local DE-driven FPV runs were reported to 
be very useful by the design engineers.  They were utilized to 
hammer out basic errors in logic and assertion definitions 
without needing to put together a simulation testbench 
environment, in the very early stages of design.  The case 
studies we discussed above describe some of the types of 
issues that were found.  Furthermore, when adding ECOs in 
later stages of the project, the DEs used local FPV to sanity-
check their changes before turning them in, and make needed 
logic corrections.  FPV counterexamples also gave design 
owners valuable insights into subtle corner cases of their 
logic. 

The most common question people ask, however, is how 
many bugs were actually found using FPV.  We have some 
difficulty in measuring the results of the DE-driven early and 
pre-release FPV runs, since these mostly were done on local, 
private model versions.  The designers report finding 10 or 
so subtle bugs that might have been tricky to catch in 
simulation.  In the later stages of our design and the Property 
Push, 8 FPV-based logic bugs were filed against Blackford, 
of which we consider 5 to be interesting bugs that would 
have been tricky to find in simulation.  There were also 6 
bugs found in assertion definitions themselves, which are 
important to debug to maintain accurate assertion checking 
in simulation. 

Finally, there is the question of overall confidence in the 
project.   We were able to implement a total of about 2300 
assertions and assumptions in our RTL.  Of the 1895 that 
were assertions eligible for FPV, 1527, or 81%, had full or 
bounded proofs before tapeout.  Spending some time pushing 
formal property verification in early designs and on our most 
critical blocks, and achieving an 81% proof rate in our 
assertions overall,  provided significant “peace of mind” 
benefit:  we knew that if we had missed some crucial corner 
case in our test plan that might violate our assertions, we 



would have a good chance to catch it using FPV.    Overall, 
Blackford was a very successful project from a logic 
standpoint—our A0 stepping booted all targeted operating 
systems within three weeks of its arrival. 

VIII. SUMMARY AND RECOMMENDATIONS 

Our experiments on the Blackford project, as described 
above, gave us a good quantity of practical experience in 
running FPV tools, in addition to leading to the discovery of 
a handful of interesting logic bugs.  Based on what we have 
learned, there are a number of learnings that should be taken 
into account by similar ASIC teams as they begin their 
designs, in order to gain maximum benefit from FPV: 

• Each ASIC project should have a central FPV 
owner to analyze project-level issues.  While the 
tools have achieved a level where they are usable by 
ASIC designers, there are still a number of complex 
details that should be analyzed centrally by a team’s 
expert, and incorporated into an FPV-launching 
wrapper script. 

• Select an assertion language that applies to both 
FPV and simulation.  Simulation can help check for 
cases where assumptions are too broad or are 
violated by expected input vectors, while FPV helps 
ensure greater coverage of cases that might be 
missed in simulation.  Using the two techniques 
together on the same set of properties is much more 
powerful than using either alone. 

• Introduce FPV very early in the design process to 
take advantage of its usefulness for unit-level debug 
and design exploration before the simulation 
testbenches are ready. 

• Create FPV-friendly RTL standards when 
beginning a design for which FPV is planned.  In 
addition to the basic tool issues such as adhering to 
synthesizable verilog standards (IEEE 1364.2001), 
try to enclose complex protocols in a hierarchy at 
some level to simplify the FPV process. 

• Each designer should be responsible for FPV on 
their block.   While a central owner can help 
diagnose and solve common problems, the complex 
process of creating assumptions (constraints) can 
really be done most efficiently by a block’s author, 
due to the subtle and tricky counterexamples often 
uncovered by FPV. 

• Assertion density checks should be used to ensure 
that all designers add sufficient assertions to make 
FPV worthwhile.   Assertion density needs to be 
measured and some level of assertions enforced in 
each block, though some types of modules (such as 
datapaths without much control logic) may need 
waivers. 

• Run FPV Regressions after RTL releases to make 
sure that the project’s FPV state is understood, both 

in terms of the total number of assertions available, 
and the number that are formally provable.  This 
regression also enables quick detection when a 
previously proven property is invalidated by a design 
change.  

• Consider moving external simulation checkers 
into RTL assertions to make them useful for FPV 
as well.  This also has the beneficial side effect of 
transforming the implied requirements of an external 
checker to a formal specification directly in the RTL. 

We should also point out that these are recommendations 
based on one project’s experience, and our team is still at a 
relatively early point in the learning curve of formal property 
verification methodology.  There are numerous related 
questions that we do not yet have good answers for, or have 
not yet attempted to address, such as: 

• Can we deploy a more formal property tracking 
database, to automatically track passing and failing 
properties and property dependencies, and auto-
update after every FPV run?     

• What proportion of a block’s failing properties 
should we try to debug as a requirement for tapeout?    
For Blackford, since assertions and FPV were 
optional overall, we did not enforce any level of 
FPV debug in most blocks. 

• How do we most effectively balance resources 
between traditional simulation-based validation and 
FPV?   It seems logical that as we become more 
comfortable with FPV,  we might get increased 
benefit by retargeting some of our current simulation 
resources. 

• Can we get significantly more effective FPV if we 
try to directly translate the high-level requirements 
in the component specification into usable RTL 
properties, and do more architecture-oriented 
property verification?   We did not really try this in 
Blackford, though this method is common on 
processor teams.   FPV runs on such properties are 
likely to be very challenging for the tools. 

• Can we generate some assertions automatically that 
will be useful to prove formally?  Some vendor tools 
such as Fishtail Focus, 0in Checklist, and Synopsys 
Magellan attempt to automatically generate 
assertions in various contexts.   

• Can we make effective use of tools which combine 
simulation and formal methods in a single run?  
Intuitively this seems like a powerful concept; the 
problems with our experiments on early tools in this 
area should not blind us to the potential for the 
future. 

We hope that other ASIC projects will share their 
experiences as well; together we can continue to refine the 



FPV methodology for this type of design, and further explore 
the possibilities of this powerful technology. 
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