
Bringing Formal Property Verification Methodology to
an ASIC Design

Erik Seligman, Ram Koganti, Kapilan Maheswaran, and Rami Naqib
Advanced Components Division., Intel Corporation

Hillsboro, OR
{erik.seligman, ram.p.koganti, kapilan.maheswaran, rami.a.naqib}@intel.com

Abstract— The Blackford North Bridge design team was the
first chipset project in Intel’s Advanced Components Division
to seriously utilize Formal Property Verification (FPV). Over
the course of the project we learned a lot about the challenges
of deploying FPV to an ASIC team. Overall our use of FPV in
Blackford was very successful, having helped us find
approximately 24 logic bugs, and significantly increased
confidence in our design. We have a number of methodology
recommendations for future ASIC projects, including early
introduction of FPV; the assigning of central FPV owners;
FPV-friendly RTL standards; leaving ownership primarily
with each DE; and the encouragement of assertion
development through density checks. We think that by
learning from our experiences and following our
recommendations, other ASIC teams will be able to expand
their use of FPV as well, for a significant increase in design
confidence.

I. INTRODUCTION

Formal Property Verification, or FPV, is a powerful
technique in which properties of a VLSI design are proven
mathematically. This contrasts with traditional simulation-
based validation, which only applies specific test vectors—
FPV proofs are valid for all possible test vectors,
theoretically providing 100% coverage for the properties
verified. Many design teams have reported finding
important bugs using FPV techniques.([1],[2],[5]) We began
using FPV on our chipset team for our recent Blackford
North Bridge (BNB) chipset design, and based on our
experiences, believe that it should become an accepted part
of ASIC design methodology.

As one would expect, there are significant challenges in
using formal property verification; there has been a lot of
debate over whether FPV offers sufficient ROI for most real-
life design problems.([3],[4]) Specifying the properties to
be proven may require the designer to learn a new
specialized language. The tools themselves have been
difficult to use, requiring specialized choice of proof engine
parameters and involved property decomposition techniques

by the users in order to obtain useful results [4]. And once
the tool reports that it has disproved a property, it takes
detailed analysis by the user to determine if this is a real
design bug.

However, recently the EDA industry has moved towards
simplifying the FPV process, allowing “push-button” runs to
prove embedded assertions in RTL designs. The Foresight
tool from Intel’s Design Technology team is an example of
these trends; in fact, we believe that the current generation of
FPV tools are indeed feasible for use by an ASIC group like
ACD. It allows the user to supply an RTL model with a set
of properties as an input, and uses heuristics to make good
choices of proof engine parameters that can handle a wide
variety of designs. The Blackford North Bridge chipset
design is the first design project in Intel’s Advanced
Components Division (ACD) to make a serious attempt at
using FPV.

We chose to concentrate on proving embedded assertions
in the RTL, which has been an increasing emphasis on
processor design teams, and enables our engineers to easily
add properties applicable to both simulation and FPV as part
of the design process. Since our design language was
Verilog, our assertions were specified using the Accelera
OVL library ([8],[9]), which has recently become a standard
in this area. We worked with the Foresight owners to add
full OVL support to the tool.

Initially, our design team was provided training on the
Foresight tool, and then left free to use FPV as much as
desired during the design process. We soon found that a
dedicated minority of design engineers went on to use FPV
very effectively, but many others still found the tool
difficulties too daunting and barely used the tool at all. This
revealed a major issue that had not been previously
discussed: what is a good team-wide methodology for using
FPV? In the area of simulation, nobody would think of just
releasing a simulator to the team and then saying “go ahead
and validate”—there are coverage metrics, test plans,
regressions and similar methodological rigor. Yet in FPV,
we had not considered these issues.

At this point, we added a central owner to drive and
evaluate FPV, and made several improvements in our
methodology. We developed a wrapper script to simplify
some of the aspects of tool usage that were challenging for
the team. A regression run was added, so we would have a
clear idea which blocks had many failing assertions, which
had no assertions at all, and which were crashing the tools.
We also initiated a “property push” on the most at-risk block,
our memory controller, in order to increase our confidence in
the design.

Overall we consider our use of FPV in Blackford a
success, having used the tool to find approximately 24 logic
bugs, and significantly increased confidence in our design.
We have a number of methodology recommendations for
future ASIC projects, including early introduction of FPV;
the assigning of central FPV owners; FPV-friendly RTL
standards; leaving ownership primarily with each DE; and
the encouragement of assertion development through density
checks.

We think that by learning from our experiences and
following our recommendations, other ASIC teams will be
able to expand their use of FPV as well, for increased design
confidence.

II. RUNNING FPV

Before we start discussing the details of what we did on
our project, we should give a basic introduction to how
formal property verification is run on an ASIC design, and
the basic debug process. In terms of the methodology for
running the tools and debugging issues, FPV is different
from some other design flows, and this is a major cause of
the usage challenges. Note that we are concentrating here on
the type of simplified flow that was used for our designs;
microprocessor teams use more elaborate techniques like
proof guidance and property decomposition [2] as well.

The major input to FPV is a design description with a set
of properties, in our case Verilog RTL models with
embedded OVL properties. (It is also possible to run FPV
on more abstract models or with externally specified
properties, but we did not do that in Blackford.) Some of
the properties must be designated by the user as assertions,
targets that need to be proven. The rest will be assumptions,
or constraints, properties that the tool should take as a given.
Usually the assumptions are properties on inputs, or
properties whose proof would depend on logic external to the
model.

The level of hierarchy where FPV is run has to be chosen
carefully: the tools can quickly run out of memory on
complex models, and we had to run numerous designs at unit
level instead of cluster level. Often it will take a few
attempts (in which the tool crashes due to excessive memory
consumption) in order to identify a reasonable level to run.

Once the proper hierarchy is selected, the user can
effectively run the FPV tool and analyze the results. The

output of the tool will be a file classifying the assertions into
four basic categories:

• Proven. This means that the tool has proven the
property for all possible cases, under the current set
of assumptions. This is the ideal result.

• Bounded Proof for <n> cycles. For complex
properties, FPV will often prove them only for a
certain number of cycles after reset. While this is
not quite as good as a full proof, it is still a very
useful result, showing that there are no possible
violations for the given number of cycles after reset.
In designs with complex state machines or deep
pipelines, there may still be an error lurking beyond
the given number of cycles; if a user knows this to
be the case for their design, they may want to rerun
with higher memory or timeouts, or at a lower
design hierarchy.

• Disproved. For properties that it determines to be
false, an FPV tool will generate a counterexample
“simulation trace” showing how they are violated.
The user must then analyze the trace, to determine if
it is a real design bug or the result of a missing
assumption that needs to be added. Typically, the
majority of these cases turn out to be missing
assumptions, which is a major challenge to users:
only a small number of the disproved properties
from FPV turn out to reveal useful design bugs.

• Unknown. These are cases where FPV was possible
on some subset of the model, but not the full model,
due to the complexity of the assertion's input cone.
These cases should usually be rerun on a simplified
model or at a lower design hierarchy to get usable
results.

After all the counterexamples are understood, the user
must add the appropriate assumptions to the model, and run
again. It is also important to follow through by verifying the
newly added assumptions: either add them as assertions to
check using FPV on the driving block, or run the project’s
validation (simulation) test suite as a sanity check. A
common pitfall is the addition of assumptions that are too
restrictive, or overconstraining: they enable the proof of the
assertions, but rule out valid counterexamples. Thus
simulation must still be run as a complement to FPV, to help
detect cases where FPV owners generated too-broad input
assumptions and possibly invalid proofs.

Overall, FPV is an iterative process: after each FPV run,
counterexamples are analyzed and assumptions are added.
Unlike the generation of simulation tests, where the
designers usually write code to explicitly generate valid test
vectors, FPV assumption generation requires that the user
think about all possible test vectors, and write constraints
that will exclude invalid ones. While this can be a lot more
work for the design engineer, it has the significant advantage
that coverage is achieved for all possible test cases, instead
of the small set of explicit ones used in simulation.

III. INTROUDUCING FPV IN BLACKFORD

Intel’s Advanced Components Division began
developing methodologies for Blackford Server Chipset
design in June 2002. It was already decided that we would
be using assertions extensively. The benefits of assertions
are well documented [7] and had already been successfully
used in the TwinCastle Server Chipset.

With assertion checks already available in the design,
using them for Formal Property Verification seemed to be a
logical next step. The benefits of using Formal Verification
on existing assertions are manifold.

• FPV does not require any simulation support or test
benches to be written, thus helping in producing
good quality RTL early.

• The FPV process would help in correcting
assertions. A common problem with assertions is
that initial assertions are often wrong. Either the
properties are not well thought or they are captured
wrongly. FPV would help clean them up, for correct
execution during simulation.

• The FPV process would lead to more assertions.
Another issue with assertions is that we can think of
only a few. While running FPV, counterexamples
provide us more properties that can be captured as
assertions or assumptions.

• Examining counterexamples and identifying new
properties leads to the designer having a better
understanding of the design.

• Some simple logic, like large counters and one shot
triggers, can be very hard to test with simulation,
especially if the logic needs to be exercised by a very
high level validation environment. An alternative is
to emphasize low-level validation or use FPV on
properties written to capture the design intent.

• A formally proved list of properties serves as a
valuable safeguard against introducing bugs at a later
stage in the design

The process of running FPV on embedded assertions in
Verilog RTL code was not fully supported by our installed
tools during the early stages of Blackford, though
commercial tools such as Blacktie from Verplex (now part of
Cadence) were available. Until then Formal Verification
within Intel primarily took place on the CPU development
teams. A separate Formal Verification Team would write
the specifications in a formal language (like PSL or ForSpec)
and apply them to the design. They would use many
specialized and time-consuming techniques (like pruning,
ordering) to exhaustively prove the design properties. Our
approach differed significantly from them in three ways.

• We did not have the resources to follow this
approach, especially with regard to learning the
specialized formal verification techniques. The

people who ran FPV were Design Engineers and
they would rather concentrate on design.

• Our primary benefit from the process was the
counterexamples from which we derived more
properties, fixed bugs, corrected existing properties
or clarified the design better. Rigorousness in proofs
was preferable but not necessary.

• We needed a really easy-to-use interface to the FPV
tools and methodology. Otherwise designers and
their managers would simply ignore them.

Debug Counter Example
with Debussy
(nWave –ssf property.fsdb)

Initialization file specifying
Reset Pattern (BSStack.init)

Setup Environment
(source fpv.setup)

Run FPV
(fst BSStack –ovl –clock bclkmain=1)

Modify RTL, Add
Assumption, or Modify
Assertion / Assumption

RTL File with OVL
Assertions (BSStack.v)

Proved or Not Violated

Counter Example ?
(property.fsdb)

STOP

Yes

No

Given the above constraints, we worked with the Intel’s
Design Technology team to guide the development of a new
formal verification tool, Foresight. This involved changes to
the older, complex flows: directly parsing embedded OVL
assertions; providing a straightforward command-line
interface; adding simple clock/reset parameters;
automatically providing good engine defaults; and
generating counterexamples in Debussy waveform format.

The initial flow for running FPV is shown in Figure 1.
The notable characteristic is the simplicity of the flow.

The FPV tools were presented to the Design Team in a
half-day workshop. The workshop included an introduction
to formal verification, a presentation on the FPV flow and a
lab session giving the designers hands-on experience.

Figure 1: Basic Foresight FPV Flow

The next two subsections describe some of the specific
successes we had in using this flow for design verification.

IV. FPV CASE STUDY #1: ADDRESS DECODE UNIT

The assertion-based FPV flow was initially tested on the
address decode unit (BCDcd_Addr) to iron out kinks in the
flow. BCDcd_Addr handles processor and PCI Express
address decode based on the system address map and routes
transactions appropriately. The possible targets are memory
(MemCyc), configuration (CfgCyc), PCI Express (PexCyc)
and other FSB (IntCyc); it could also be internally aborted.
The system address map is based on numerous configuration
registers which have yet to be fully randomized in the
simulation environment even today. These configuration
values are decoded by the targeted logic blocks in parallel,
but it is important that only one of the blocks is activated at
any given time. For these reasons the decode unit was a
good candidate for FPV.

FPV was used as the first form of unit level validation on
the block and it was followed by simulation. The original
property that was proved was that the cycles (MemCyc,
CfgCyc, PexCyc and IntCyc) were mutually exclusive and at
least one was asserted for every transaction. More properties
were added and proven after simulation found problem areas.

FPV found three initial problems and two subsequent
ones. For example, one issue was related to an address
decode boundary condition where a ‘>’ was used instead of
the intended ‘>=’:

assign MEM[5] = ((AddressA >=
`AddrWi'h 00_0010_0000) && (...)) ? 1'b1
: 1'b0;

Another was related to request encoding where there was
overlap in the decode of transaction types, causing false
request types to be output. The encoding was done in
parallel and FPV was used to guarantee that each decode was
adequately qualified. This would have taken much longer to
find using simulation.

All the bugs that were found by FPV could have been
uncovered by simulation, but the property that was proven
gives higher confidence in the unit, since the simulation
environment lacks randomized configurations. The bugs
were found without requiring a complex environment to be
written; the complexity was in coming up with the correct
assumptions.

FPV provided a good understanding of the corner cases
in the decode logic, including illegal conditions. We added 8
basic input assumptions and 85 configuration register related
assumptions in the process of proving the above mentioned
property. One of these assumptions turned out to be
overconstraining and was hiding a bug that was uncovered
by simulation, where memory region that was made visible
by moving an adjustable region caused assertion of PexCyc
instead of MemCyc. This assumption had to be relaxed and
property reproved. The configuration assumptions were very

useful in bringing up the initial simulation configurations and
verifying later configuration changes.

Some tips and tricks based on this experience include:

• Be careful not to use a simple ‘mutex’ property
when something more complex is meant. This can
be an issue for naive assertion authors.

• Run at a higher-level module to incorporate more
logic, reducing the need for assumptions. A couple
of properties in the inbound address decode
(BCDcd_InbAddr) required FPV to be run on the
parent module (SBDcd) so that additional
assumptions can be avoided due to the dependency
on the sibling unit BCDcd_Addr.

• Be careful about cases where a sudden reset
reassertion can invalidate a property. Reset had to
be pulled low (inactive) when proving a property
that required decode outputs to be held stable for 2
clock cycles.

• Keep track of previous FPV results for sanity-
checking. A global summary file proved useful in
keeping track of when a property was last proven
and what assumptions were made.

V. FPV CASE STUDY #2: MEMORY CONTROLLER
FPV was used successfully in several of the Memory

Cluster (MC) units, including the Memory Arbiter (MRA),
and the Memory Protocol Engine (MPE). There are two
branches in the MC, and each branch has its own MRA and
MPE units. The MRA arbitrates between reads coming from
4 different queues and writes coming from 2 other queues,
and the MPE stacks and sends the commands issued by
MRA and sends them in the appropriate FBD (Fully
Buffered DIMMs) format. Additionally, the MPE applies
various back-pressuring signals on MRA to make sure that
different commands do not conflict with each other and that
various DIMM restrictions are accounted for.

There is a very tight handshake between MRA and MPE
on each branch, but the two branches are independent of
each other in normal running conditions. There is a
configuration, however, “mirror mode”, where the two
branches become intertwined. In this mode, write
commands (and associated data) that are issued on one
branch need to be sent to the other branch at the same time.
This creates a rather complicated handshake and requires
special handling.

Verifying assertions on one branch proved to be
relatively straightforward. However, proving the same
assertions in mirror mode where both branches come into the
picture proved to be a demanding job. The ideal way of
verifying those assertions would have been running FPV on
the whole MC cluster and letting the tool test all the MRA
and MPE logic as well as other interfacing units to ensure
that the assertions are not violated. The size and complexity
of the MC cluster made this option impossible: FPV kept

crashing during the runs. The second best option was to try
to combine the logic of both branches into one wrapper and
use FPV to try to prove the assertions at that level. Because
of the interdependency between MPE/MRA and the two
branches, we decided to create two levels of wrappers: one
around MRA and MPE, and another around the two
branches.

Furthermore, a global assumption file was added to the
top wrapper with 25 assumptions on interfacing units. After
adding the wrappers, we verified a total of 82 MPE/MRA
assertions, none of which were violated. When running
simulation regressions on a new model late in the project, the
added assumptions caught 3 potential problems in other
interfacing units (where FPV had not been fully debugged).
No real problems were found in MPE/MRA itself, but two
minor modifications were made just in case other interfacing
units were not covering special corner cases.

A. MPE Electrical Throttling Example
In this example, the specifications require that DIMM

activations be limited to a programmed value on each rank
on a branch. The programmed value is essentially the width
of a sliding window, and the specifications require that each
rank should not receive more that 4 activations at any time
within that sliding window. Once the threshold of 4
activations is reached, the MRA starts electrical throttling on
the rank in question by asserting ElecBlockRank, which
blocks further activations until the window slides further in
time and the very first activation steps outside the window.
Assertions similar to the one below were written for all 8
ranks:

assert_never EThrotViolation0
(bclkmain, resetnn, (ElecBlockRank[0] &
ActDone & (ActRank==3'd0)));

The ActDone & ActRank above could originate from
Branch[0] but are sent to both Branch[0] & Branch[1] in
mirror mode. This extra complexity made these assertions
very difficult to prove on a single MRA. However, once the
wrappers described above were added, FPV was able to use
the logic of both branches and managed to prove the above
property.

B. MPE Configuration Command Example
The MPE schedules configurations reads and writes to be

sent on the FBD. It receives a request (IssueCfgTxn) from
the Memory Address Decode unit (MAD). Along with the
request, the details of the configuration command
(CfgDecAddress) are supposed to stay stable until and
acknowledgement is sent back by the MPE (MpeCfgSent).

In initial FPV runs, many invalid counterexamples were
generated, where the CfgDecAddress input was illegally
changing in the middle of a command, before the MPE
acknowledgement. We realized that an explicit assumption
was needed in order to specify that this address had to
remain stable. The OVL expression below captures this
handshake:

assert_win_unchange #(1,1)
ASSUME_TxnUnchange0 (bclkmain, resetnn,
IssueCfgTxn, CfgDecAddress, MpeCfgSent);

This was needed to prove other assertions in MPE and
was coded as an assumption since it applies to an interfacing
unit (MAD), and cannot be proven based on the MRA/MPE
logic only. Therefore, it was added at the top-level wrapper
and was applied to both branches. Once this was added,
many previously failing assertions were proven in FPV.

This assumption later fired in simulation, though, when
running the model release regressions after a new RTL
release. It was found the MAD samples the buffer ID from
the Data Management (DM) cluster one cycle late, and that
ID can change before the MPE asserts the MpeCfgSent.

Note the symbiotic relationship between simulation and
FPV in this case: while simulation ultimately detected the
error, the assumption that was violated in simulation was
generated as part of the FPV debug process. This illustrates
the advantage of using a general assertion library like OVL,
which applies to both the simulation and FPV environments.

VI. DRIVING FPV CENTRALLY

About three quarters before tapeout, we realized that only
a minority of design engineers were actively using Foresight
to check their designs. Part of the problem was that FPV had
no real owner for our project: once the tool was available, it
did not appear in any official design completion checklists,
so there was little management support for its use. To
address these issues, a formal verification owner was
assigned for BNB, to analyze and improve our usage of FPV
throughout the project.

This owner’s first task was to analyze our Foresight runs
for common project-level issues, and implement central
solutions to make it easier for individual engineers to run the
tool. He identified a number of common issues that resulted
in invalid counterexamples or failed tool runs, and pursued
several solutions: a wrapper script to hide tool details,
central assumption templates to quickly enable workarounds
for common problems, and working with the tool authors to
improve compatibility with BNB designs. Among the issues
simplified by the wrapper script were:

• Tool invocation details. Even simplified FPV tools
like Foresight offer a bewildering set of options for a
novice user, and it is often unclear which ones need
to be set explicitly and which have reasonable
defaults.

• RTL Issues and Compiler Limitations. Numerous
parts of Blackford initially could not be consumed
by the FPV compiler (Esperanto), due to slight
deviations from the IEEE Verilog standard that
broke the FPV compiler but were tolerated by
simulation.

• Mid-test reset assertion. Often a counterexample
would be seen to be reasserting reset in the middle of

some complex protocol. While this is technically
possible, it is not interesting from a debug point of
view. An example of this is discussed in Case Study
#1 above. We wanted to rule out all such cases in
FPV runs by default.

• Configuration registers. Many designs have a set
of config registers, which are set once and never
change values without another reset. Like a mid-test
reset assertion, a mid-test config change is
technically possible but not interesting from a debug
point of view in most cases.

• Stability assumptions. Most BNB inter-unit signals
are synchronized to rising clock edges, but by
default Foresight generates counterexamples with
signals changing in both clock phases.

The next task was to implement a project-level FPV
regression. Once this was implemented, we began regular
runs on our full design, so we could assess which clusters
were making effective use of FPV, and begin deciding where
to concentrate more detailed efforts. We found that initially
about 70% of our assertions were proven in the regressions,
and also identified several clusters with almost no assertions.
Running the regressions regularly enabled us to identify
cases where previously passing assertions began to fail, so
we could analyze them for further debug.

Along these lines, we also began running improved
assertion density checks. Previously, assertion density had
been measured using the traditional metric of assertions per
line of code. We added a new method provided by the 0in
Check tool from Mentor Graphics: functional coverage of
flops by assertions. This check measured how far each flop
is from the nearest assertion, enabling us to find cases where
seemingly assertion-dense units (measured by assertions per
line) actually had large areas of logic that were uncovered.

We then identified the cluster considered the most at-risk
due to logic complexity, our memory controller (MC), and
began a Property Push, where the FPV owner and other
experts worked with individual design engineers. In cases
where units were poorly covered by assertions or most
assertions were not yet proven, the experts helped the DEs
write new assertions, run FPV, and debug the results.
Initially we were hoping that the central experts could take
over most of the FPV work for these blocks, but it quickly
became apparent that very detailed design expertise is
needed to create the correct assumptions—the assumptions
created by non-authors of a design almost always missed
some subtle issue and were violated in simulation. Thus we
decided to revert to a more DE-driven method, with the
central owners encouraging FPV use and helping designers
with tool usage and debug issues. In the end, we considered
the Property Push a success; it found five interesting logic
bugs that had been missed in simulation, using about 10
engineer-weeks of effort.

Finally, we began some experiments with a vendor FPV
tool, Mentor’s 0in Search, that takes an interesting

alternative approach. This tool combines simulation with
FPV in the same run: it analyzes simulation traces to find
interesting states, then runs FPV from that point. Thus it has
the potential of finding errors many cycles after reset
(beyond the proof radius of tools like Foresight) using real-
life test cases as a guide. While some companies have
reported good results with this and similar tools ([1],[6]) we
were disappointed. There were too many tool bugs and
minor issues to get it working on more than one cluster by
tapeout, and in the end 0in Search found us no additional
bugs. Later we also tried the similar Magellan tool from
Synopsys, but were not able to find any new bugs using that
technology either.

VII. RESULTS

There are three types of results to report from using our
FPV methodology. First, there is the usefulness of the DE-
driven FPV run on local models. Second, there is the
common metric of the number of bugs found. Finally, there
are the overall benefits to the project tapeout confidence as a
whole.

Qualitatively, local DE-driven FPV runs were reported to
be very useful by the design engineers. They were utilized to
hammer out basic errors in logic and assertion definitions
without needing to put together a simulation testbench
environment, in the very early stages of design. The case
studies we discussed above describe some of the types of
issues that were found. Furthermore, when adding ECOs in
later stages of the project, the DEs used local FPV to sanity-
check their changes before turning them in, and make needed
logic corrections. FPV counterexamples also gave design
owners valuable insights into subtle corner cases of their
logic.

The most common question people ask, however, is how
many bugs were actually found using FPV. We have some
difficulty in measuring the results of the DE-driven early and
pre-release FPV runs, since these mostly were done on local,
private model versions. The designers report finding 10 or
so subtle bugs that might have been tricky to catch in
simulation. In the later stages of our design and the Property
Push, 8 FPV-based logic bugs were filed against Blackford,
of which we consider 5 to be interesting bugs that would
have been tricky to find in simulation. There were also 6
bugs found in assertion definitions themselves, which are
important to debug to maintain accurate assertion checking
in simulation.

Finally, there is the question of overall confidence in the
project. We were able to implement a total of about 2300
assertions and assumptions in our RTL. Of the 1895 that
were assertions eligible for FPV, 1527, or 81%, had full or
bounded proofs before tapeout. Spending some time pushing
formal property verification in early designs and on our most
critical blocks, and achieving an 81% proof rate in our
assertions overall, provided significant “peace of mind”
benefit: we knew that if we had missed some crucial corner
case in our test plan that might violate our assertions, we

would have a good chance to catch it using FPV. Overall,
Blackford was a very successful project from a logic
standpoint—our A0 stepping booted all targeted operating
systems within three weeks of its arrival.

VIII. SUMMARY AND RECOMMENDATIONS

Our experiments on the Blackford project, as described
above, gave us a good quantity of practical experience in
running FPV tools, in addition to leading to the discovery of
a handful of interesting logic bugs. Based on what we have
learned, there are a number of learnings that should be taken
into account by similar ASIC teams as they begin their
designs, in order to gain maximum benefit from FPV:

• Each ASIC project should have a central FPV
owner to analyze project-level issues. While the
tools have achieved a level where they are usable by
ASIC designers, there are still a number of complex
details that should be analyzed centrally by a team’s
expert, and incorporated into an FPV-launching
wrapper script.

• Select an assertion language that applies to both
FPV and simulation. Simulation can help check for
cases where assumptions are too broad or are
violated by expected input vectors, while FPV helps
ensure greater coverage of cases that might be
missed in simulation. Using the two techniques
together on the same set of properties is much more
powerful than using either alone.

• Introduce FPV very early in the design process to
take advantage of its usefulness for unit-level debug
and design exploration before the simulation
testbenches are ready.

• Create FPV-friendly RTL standards when
beginning a design for which FPV is planned. In
addition to the basic tool issues such as adhering to
synthesizable verilog standards (IEEE 1364.2001),
try to enclose complex protocols in a hierarchy at
some level to simplify the FPV process.

• Each designer should be responsible for FPV on
their block. While a central owner can help
diagnose and solve common problems, the complex
process of creating assumptions (constraints) can
really be done most efficiently by a block’s author,
due to the subtle and tricky counterexamples often
uncovered by FPV.

• Assertion density checks should be used to ensure
that all designers add sufficient assertions to make
FPV worthwhile. Assertion density needs to be
measured and some level of assertions enforced in
each block, though some types of modules (such as
datapaths without much control logic) may need
waivers.

• Run FPV Regressions after RTL releases to make
sure that the project’s FPV state is understood, both

in terms of the total number of assertions available,
and the number that are formally provable. This
regression also enables quick detection when a
previously proven property is invalidated by a design
change.

• Consider moving external simulation checkers
into RTL assertions to make them useful for FPV
as well. This also has the beneficial side effect of
transforming the implied requirements of an external
checker to a formal specification directly in the RTL.

We should also point out that these are recommendations
based on one project’s experience, and our team is still at a
relatively early point in the learning curve of formal property
verification methodology. There are numerous related
questions that we do not yet have good answers for, or have
not yet attempted to address, such as:

• Can we deploy a more formal property tracking
database, to automatically track passing and failing
properties and property dependencies, and auto-
update after every FPV run?

• What proportion of a block’s failing properties
should we try to debug as a requirement for tapeout?
For Blackford, since assertions and FPV were
optional overall, we did not enforce any level of
FPV debug in most blocks.

• How do we most effectively balance resources
between traditional simulation-based validation and
FPV? It seems logical that as we become more
comfortable with FPV, we might get increased
benefit by retargeting some of our current simulation
resources.

• Can we get significantly more effective FPV if we
try to directly translate the high-level requirements
in the component specification into usable RTL
properties, and do more architecture-oriented
property verification? We did not really try this in
Blackford, though this method is common on
processor teams. FPV runs on such properties are
likely to be very challenging for the tools.

• Can we generate some assertions automatically that
will be useful to prove formally? Some vendor tools
such as Fishtail Focus, 0in Checklist, and Synopsys
Magellan attempt to automatically generate
assertions in various contexts.

• Can we make effective use of tools which combine
simulation and formal methods in a single run?
Intuitively this seems like a powerful concept; the
problems with our experiments on early tools in this
area should not blind us to the potential for the
future.

We hope that other ASIC projects will share their
experiences as well; together we can continue to refine the

FPV methodology for this type of design, and further explore
the possibilities of this powerful technology.

IX. ACKNOWLEDGEMENTS

We would like to thank the many other design engineers
on the Blackford team who helped to pioneer this effort,
including Rajesh Pamujula, Dhananjay Joshi, Nick Stasik,
Joaquin Romera, and Joe Udompanyanan. We would also
like to thank the additional engineers who assisted with FPV
activities: Zan Yang, Nandini Sridhar, Latha Rao, and Luis
Kida, as well as the Esperanto/Foresight support team,
especially Yossef Levy, Dan Jacobi, Ranan Fraer and Yael
Zbar. And of course, we should acknowledge our managers,
who showed great patience as we explored this new area:
Suneeta Sah, Amir Taraghi, Dave Smith, and Subba Vanka.

X. REFERENCES
[1] Frank Dresig, et al., “Assertions Enter the Verification Arena”, Chip

Design Magazine, December/January 2004.

[2] Tom Schubert, “High-Level Formal Verification of Next-Generation
Microprocessors”, Design Automation Conference, June 2003.

[3] Rajesh Gupta, et al., “Panel: Formal Verification: Prove It or Pitch
It”, Design Automation Conference, June 2003.

[4] David Dill et al., “Panel: Formal Verification Methods: Getting
Around the Brick Wall”, Design Automation Conference, June 2002.

[5] Mike G. Bartley, Darren Gilpin, and Tim Blackmore, “A Comparison
of Three Verification Techniques”, Design Automation Conference,
June 2002.

[6] Remi Francard and Franco Toto, “Take the Next Productivity Leap”,
Chip Design Magazine, December/January 2005.

[7] Lionel Benning and Harry Foster, “Principles of Verifiable RTL
Design”, 2nd Edition, ISBN 0-7923-7368-5, Kluwer Academic
Publishers, 2001.

[8] Accelera OVL Technical Committee Web Page,
http://www.eda.org/ovl/.

[9] Harry Foster, Kenneth Larsen, and Mike Turpin, “Introducing the
New Accelera Open Verification Library Standard”, Design and
Verification Conference, February 2006

