PARADOXES, MATHEMATICAL ODDITIES, AND FORMAL VERIFICATION

Erik Seligman 4/23/2019

DISCLAIMER

> Presentation is by Erik Seligman, author of

➤ and host of Math Mutation podcast...

> ...NOT endorsed by any company in particular.

PARADOXES AND ODDITIES

- ➤ Paradox: Math statement that seems self-contradictory
- ➤ Oddity: Mathematical fact that might surprise you
 - > Sometimes fuzzy boundary: "This statement cannot be proven".
- ➤ Often resolvable in a line or two of algebra...
- > .. but can provide qualitative insights into thought process

OUTLINE OF TALK

- >Playing with Premises
- >Amusing Assumptions
- >Management Mania

OUTLINE OF TALK

- >Playing with Premises
- >Amusing Assumptions
- >Management Mania

PLAYING WITH PREMISES

AN APOLOGY

> Speaker's Promise: I'll probably lie to you today.

AN APOLOGY: PROOF

- > Speakers Promise: I'll probably lie to you today.
- ➤ Assume I'm 97% accurate at any given minute
 - ightharpoonup Talk 45 min ==> (.97^45) = .25
 - > ==> 75% chance I'll say something wrong!
 - ➤ David Makinson's "Preface Paradox"
- ➤ Remember that even in a series of very accurate checks, small error chances accumulate!

CARROLL'S STUBBORN TORTOISE

➤ Achilles: "P->Q, and P, therefore Q!"

➤ Tortoise: You have another premise there...

➤ ((P->Q) & P)) -> Q

➤ Achilles: "OK, you win. But with that, it's proven..."

➤ Tortoise: Not so fast...

➤ (((P->Q) & P)) -> Q) & (P->Q) & P -> Q

➤ (from dialogue by Lewis Carroll)

CARROLL'S STUBBORN VALIDATION ENGINEER

- ➤ When is a design "really" proven?
 - ➤ Did you enter correct specs into FPV tool?
 - ➤ Was FPV tool correctly implemented in C++?
 - ➤ Was C++ compiler formally verified?
 - ➤ Was it run on a formally verified OS?
- ➤ "Full Proofs" always contain unproven assumptions!

GRUE AND BLEEN

➤ Is this a blue house & a green house?

GRUE AND BLEEN

- ➤ Left house was GRUE: Green until 5 seconds ago, then blue
- ➤ Right house was BLEEN: similar definition
- ➤ How can you tell Grue & Bleen from Blue and Green?
 - ➤ Nelson Goodman's "new riddle of induction"

GRUE AND BLEEN AND PROOFS

- ➤ Left house was GRUE: Green until 5 seconds ago, then blue
- ➤ Right house was BLEEN: similar definition
- ➤ How can you tell Grue & Bleen from Blue and Green?
 - ➤ Nelson Goodman's "new riddle of induction"
- ➤ Are you sure you've defined the right primitives?
- ➤ Be careful about bounded proofs, things can change!

STUDYING HIPPOS IN MY BASEMENT

- ➤ I want to be a Hippologist... but too lazy to leave house
 - > and wife won't let me get a pet hippo
- ightharpoonup Can I gather evidence for "X is Hippo ==> X has big nose"?

STUDYING HIPPOS— USING CONTRAPOSITIVES

- ➤ I want to be a Hippologist... but too lazy to leave house
- ightharpoonup Can I gather evidence for "X is Hippo ==> X has big nose"?
- ightharpoonup Logically equivalent contrapositive (A->B == !B->!A)
 - \succ X doesn't have big nose ==> X is NOT hippo
- ➤ Now it's easy to find confirming instances!

CONSIDER THE CONTRAPOSITIVE

- ➤ Logically equivalent contrapositive:
 - \rightarrow A->B is equivalent to !B->!A
- ➤ Implication can go two ways— choose the most useful!
 - ➤ Which direction has the more meaningful trigger?
 - ➤ Which direction specifies the 'unusual' condition?

OUTLINE OF TALK

- >Playing with Premises
- >Amusing Assumptions
- >Management Mania

AMUSING ASSUMPTIONS

THE SHIP OF THESEUS

- > Museum decides the Ship of Theseus needs renovation
 - Old plank thrown in junkyard
 - > Plank replaced: is it the same ship?

THE SHIP OF THESEUS (II)

- ➤ A bum at the junkyard assembles discarded planks...
 - ➤ Which is the real ship?

THE VERIFICATION IP OF THESEUS

redo this part to the property of the property

- ➤ How about with Verification IP?
 - ➤ How much change makes it a new IP?
 - ➤ How much change requires re-verification vs spec?

AN ALTERNATE SHAPE FOR WHEELS

- > Problem: smooth travel down assembly line.
- ➤ What are the assumptions for our rollers?

AN ALTERNATE SHAPE FOR WHEELS (II)

- > Problem: smooth travel down assembly line.
- > What are the assumptions for our rollers?
 - ➤ We need curves of constant width— not necessarily circles!
- > Reuleaux Triangles- form at intersection of 3 circles

AN ALTERNATE SHAPE FOR WHEELS (III)

- > Problem: smooth travel down assembly line.
- ➤ What are the assumptions for our rollers?
 - ➤ We need curves of constant width— not necessarily circles!
- > Enforce the spec, not a preconceived solution

INTERMEDIATE VALUE PUZZLE

➤ Q: Are there 2 antipodal points on Earth that are the same temperature, right now?

INTERMEDIATE VALUE PUZZLE (II)

f(0) f(180)

- ➤ Q: Are there 2 antipodal points on Earth that are the same temperature, right now?
- ➤ Use the Intermediate Value Theorem:
 - ➤ If f(a) > 0 and f(b) < 0, and f is continuous
 - rightharpoonup there is some point c between them where f(c) = 0.
- Start at opposite points p and q
 - ightharpoonup f(angle) = Temp(p) Temp(q) = T at 0, -T at 180
 - > ==> Somewhere between them, f(angle) = 0!

INTERMEDIATE VALUE PUZZLE (III)

- ➤ Q: Are there 2 antipodal points on Earth that are the same temperature, right now?
- > Provable using basic principles
 - > Temperature is continuous
 - ➤ Intermediate Value Theorem
- > Be ready for far-reaching consequences of simple assumptions

TERRELL ROTATION

- ➤ We remember from relativity: if object is traveling close to speed of light, it shortens relative to observer
- ➤ If a square zooms past you... what do you see?

TERRELL ROTATION (II)

- ➤ We remember from relativity: if object is traveling close to speed of light, it shortens relative to observer
- ➤ If a square zooms past you... what do you see?
 - ➤ Actually, you see a *rotated* rectangle
 - ➤ Light from forward and rear edges arriving at slightly different times

TERRELL ROTATION (III)

- ➤ For decades after Einstein, everyone got this wrong!
 - ➤ Common textbook illustrations omitted rotation
 - > Famous physicists never thought it through
 - ➤ Terrell finally published real solution in 1959
- > All the smart people can miss something.

OUTLINE OF TALK

- >Playing with Premises
- >Amusing Assumptions
- >Management Mania

MANAGEMENT MANIA

SELF-SIMILAR FRACTALS

➤ Fractals: complex forms that are often self-similar

SELF-SIMILAR ORGANIZATIONS

- ➤ How is an organization like a fractal?
 - > Parts of an org should reflect the same values as the top level
 - ➤ (from Margaret Wheatley book)

ADJUSTED STATISTICS

Gr 3 Gr 4 Gr 5 Gr 6

- ➤ Graphs of results often come with error bars
- ➤ How to deal with uncertain results?
- ightharpoonup Gr4 above == 66 +/- 11?

ADJUSTED STATISTICS IN GOVERNMENT

Gr 3 Gr 4 Gr 5 Gr 6

- ➤ "Adjusted Score" = value + error bar
 - ➤ Maximizes optimism for reporter
 - ➤ Gr 4 above has average of 66, but "adjusted score" of 77!
 - ➤ No comment on ethics...
- ➤ If anyone claims to provide an "adjusted" measurement, investigate details of the adjustment

ZENO'S PARADOX

- ➤ An old classic, must be included in any paradox discussion!
 - Actually one of several similar paradoxes
- ➤ Can the Achilles cross the road?

ZENO'S PARADOX: SOLVED

1/2 1/4 1/8 1/8

- ➤ Can Achilles cross the road?
- > Solution: Infinite sum of infintesmals can be finite

$$\sum_{1/2^n=1}$$

ZENO'S PARADOX OF PROJECT SCHEDULING

- Can Achilles ever finish FVing his design?
- > No longer a sum of infinitesimals
- ➤ As you tackle harder complexity issues, full proof efforts can stretch forever: create good bounded signoff criteria!

ABUSING INDUCTION

- ➤ Q: What makes a rectangle a rectangle?
- ➤ To answer, observe a few...

ABUSING INDUCTION (II)

- ➤ Q: What makes a rectangle a rectangle?
- ➤ To answer, observe a few...

ABUSING INDUCTION (III)

- ➤ Q: What makes a rectangle a rectangle?
- > Some common features:
 - Convex polygon
 - > Four corners
 - ➤ Two pairs of parallel sides

ABUSING INDUCTION (IV) - THE CONVERSE OF OUR INTENT

➤ Q: What makes a rectangle a rectangle?

- ➤ What went wrong?
 - > Only looking at positive examples gives us
 - ➤ (rectangle) ==> P
 - > We also need to look at negative examples to infer
 - \triangleright P ==> (rectangle)

ABUSING INDUCTION FOR CAREER ADVICE

➤ "I want to be a CEO"

Interesting Hair

ABUSING INDUCTION FOR CAREER ADVICE

- ➤ "I want to be a CEO"
 - ➤ Need to contrast positive & negative examples

What's true about these people...

But not these?

- ➤ To gain wisdom through induction, always need to look at examples of both success and failure
 - ➤ Also applies to case study papers...

SUMMARY

IMPORTANT LESSONS: PLAYING WITH PREMISES

➤ Preface Paradox in Validation

Carroll's Stubborn FV-Implementing Tortoise

➤ Grue and Bleen and Primitives

Contrapositive Hippos

IMPORTANT LESSONS: AMUSING ASSUMPTIONS

➤ The Verification IP of Theseus

Reuleaux's Non-Round Wheels

➤ Theorem-Controlled Weather

➤ Smart Physicists' Terell Failures

IMPORTANT LESSONS: MANAGEMENT MANIA

➤ The Fractal Organization

➤ The Truth about "Adjusted" Statistics

> Zeno's Paradox of Project Scheduling

➤ Abusing Induction for CEOs and Case Studies

FURTHER READING

- http://mathmutation.com
- ➤ http://formalverificationbook.com